

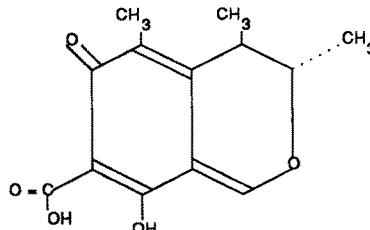
Citrinin^{*)}

H. K. Frank

Formerly: Federal Research Centre for Nutrition, Karlsruhe, Germany

Summary: Citrinin, a nephrotoxic mycotoxin, has been of growing importance also for the “International Agency for Research on Cancer”, ever since its presumable role in the occurrence of Balkan endemic nephropathy (BEN) was discussed at the congress on “Mycotoxins, Endemic Nephropathy and Urinary Tract Tumours” held in Lyon in June 1991 (12). In late 1991, citrinin was therefore also included in the list of toxins to be examined by the screening subcommittees on natural toxins of the International Live Science Institute, European Branch.

Zusammenfassung: Es wird eine Übersicht zu dem Mykotoxin Citrinin gegeben. Dabei werden die Citrininbildner und ihre Begleittoxine, Bildungsbedingungen, das natürliche Vorkommen, der Einfluß der Be- und Verarbeitung sowie die Kinetik und die Toxikologie berücksichtigt. 106 Literaturzitate.


Key words: mycotoxins; citrinin; citrinin producers; biological effects; natural occurrence

Schlüsselwörter: Mykotoxine; Citrinin; Citrininbildner; biologische Wirkung; natürliches Vorkommen

Chemical data

IUPAC Systematic Name: (3R,4S)-4,4-dihydro-8-hydroxy-3,4,5-trimethyl-6-oxo-3H-2-benzopyran-7-carboxylic acid.

Structural formula:

Molecular formula: C₁₃H₁₄O₅ Mol.wt: 250.25

Description: yellow, odorless, crystalline solid.

Melting point: 170–173°C.

Solubility: practically insoluble in water; soluble in ethanol, dioxane, dilute alkali, acetone, benzene, and chloroform.

Spectroscopy data: see IUPAC (43).

^{*)} Herrn Kollegen Lothar Leistner, Bundesanstalt für Fleischforschung in Kulmbach, zum 65. Geburtstag.

Citrinin producers and concomitant toxins

In searching for antibiotic natural substances Raistrick and Hetherington (74) isolated citrinin in 1931 from cultures of *Penicillium citrinum*. However, citrinin was never used as an antibiotic because of its toxic effects on vertebrates. Since then, many other *Penicillium* species and some *Aspergilli* have also been found to produce not only citrinin, but some other toxins as well, if conditions are favorable (see Table 1).

Table 1. Other mycotoxins, produced by citrinin-synthetizing molds

Species	Mycotoxin	Ref.
<i>Aspergillus candidus</i>	Kojic acid Xanthoascin	19, 80
<i>A. carneus</i>	?	80
<i>A. egypticus</i>	?	23
<i>A. flavipes</i>	?	8
<i>A. niveus</i>	?	80
<i>A. terreus</i>	Terreic acid Patulin 6-Hydroxymellein Geodin Geodoxin Acetylaranotin	19, 80
<i>Penicillium canescens</i>	Rugulosin Penicillic acid Penitrem A	80
<i>P. citreoviride</i>	Citreoviridin	80
<i>P. citrinum</i>	Kojic acid	80
<i>P. claviforme</i>	Patulin	80
<i>P. cyclopium</i> = <i>P. aurantiogriseum</i>	Ochratoxin A Cyclopiazonic acid Patulin Penicillic acid Viomellein Xanthomegnin Rugulosin	17, 28, 80
<i>P. expansum</i>	Curvularin Penicillic acid Patulin	56, 65, 80
<i>P. fellutanum</i>	Carlosic acid Spinolosin	80
<i>P. implicatum</i>	?	80
<i>P. janthinellum</i>	Penicillic acid Penitrem A	8, 80
<i>P. jensenii</i>	?	80
<i>P. lividum</i>	Penicillic acid	80
<i>P. notatum</i>	Roquefortine	80
<i>P. palitans</i>	Ochratoxin A 4-Hydroxy-ochratoxin A Penicillic acid Penitrem A, B, C	17, 28, 80

<i>P. purpureescens</i>	Ochratoxin A Penitrem A	17, 28
<i>P. roqueforti</i>	Penicillic acid Patulin Fumigaclavin A Roquefortine PR-Toxin	8, 80
<i>P. spinulosum</i>	Penitrem A Spinulosin	80
<i>P. steckii</i>	Curvularin A	46, 80
<i>P. velutinum</i>	?	80
<i>P. viridicatum</i>	Ochratoxin A Penicillic acid Viomellein Xanthomegnin Oxalic acid Cyclopiazonic acid Penitrem A Griseofulvin	17, 19, 28, 51
<i>Pythium ultimum</i>	?	8

Taxonomy according to Raper and Fennell (75), and Raper and Thom (76), resp.

Among these concomitant toxins, which are exclusively nephrotoxins, penicillic acid has been found eight times, ochratoxin A four times, and viomellein and xanthomegnin twice (Table 1). These findings suggest the probability of additive and even superadditive effects of natural contaminations of foods and feedstuffs.

Aspergillus candidus, with a minimum a_w of 0.75, belongs to the xerotolerant species and hence is of some importance as a parasite on stored produce. In temperate and cool climates, *A. terreus*, *Penicillium cyclopium*, *P. expansum*, *P. roqueforti* and *P. viridicatum* are ubiquitous fungi on agricultural produce, but also on treated and processed food. Some of them even belong to the normal "refrigerator flora" (81). All species listed in Table 1 have been found in soil; optimal conditions for growth on organic substrates and for mycotoxin production are air humidities of 70 % and more, while humidities from 65 % on allow retarded growth only.

However, as many authors report, the ability to produce the above-mentioned mycotoxins simultaneously or at certain quantities is not common to all isolates of the fungal species mentioned. This failure is due to the genetic lability of the asexually multiplying molds (*Deuteromycotina*) and to their ability to exchange nuclei with different genetic information through anastomoses among individuals of one species.

Conditions of citrinin production

Citrinin production is dependent upon the growth of one or several of the fungal species listed in Table 1. All these species are so-called storage fungi, infesting the produce superficially with conidia, while the fungal mycelium develops mainly under unfavorable storage conditions. In the initial phase after germination of conidia no mycelium grows. It is only in the so-called idiophase that secondary metabolic products form under favorable nutritional conditions provided by

stored food and feedstuffs, and in the presence of sufficient water and appropriate temperatures. However, the parameters humidity and temperature are controllable by storekeepers (see Table 2). The limits for fungal growth are usually wider than those for fungal mycotoxin production.

Table 2. Conditions of growth and citrinin production of some species (81)

Species	Temp. (°C)		Water activity (a_w *) Min.
	Min.	Opt.	
<i>A. candidus</i>	3-4	20-24	0.75
<i>P. citrinum</i>	5-7	26-30	0.80
<i>P. cyclopium</i>	-2	25-30	0.85
<i>P. expansum</i>	-3	25-26	0.82
<i>P. viridicatum</i>	-2	21-23	0.81

* a_w = equilibrium water content. Water content of a product which depends on the contents of fat, protein and carbohydrates, and which is in equilibrium with a certain relative humidity ($a_w \times 100$).

According to Takahashi et al. (93), who studied *Penicillium citrinum* in parboiled rice, appearance of fungal mycelium and mycotoxins after 14 days' incubation seems to be limited to the external layers of the grains.

It is interesting that the individual mycotoxins produced by a species may be controlled by different parameters. *P. viridicatum*, for example, has been found to grow well at 85 % relative humidity (r.h.), but to produce only ochratoxin A and penicillic acid, while at 90 % r.h. citrinin is produced in addition (66). In storage tests of durum wheat containing 15 % and 19 % water, citrinin production began after 24 weeks, reached its maximum of 80 mg/kg after 48 weeks, and decreased to 20 mg/kg by the end of the 60th week (3).

The presence of other fungal species may be of influence as well. Pravindra et al. (73) report that *P. citrinum* fails to produce citrinin in the presence of *A. niger* and/or *Trichoderma viride*, while normal citrinin biosynthesis is observed if other fungal species are present. These observations, although very interesting, are of little practical importance, as the fungal flora changes in its composition, and as temperature and humidity are subject to daily and seasonal fluctuations. But they help to explain the highly inhomogeneous distribution of mycotoxins in granular bulk material.

From the values listed in Table 2 those storage conditions may be derived which have to be observed in order to prevent fungal growth and mycotoxin production in stored produce.

Natural occurrence of citrinin

Sterile food inoculated with citrinin producers, but also artificial media contained citrinin after some time. This shows that this mycotoxin may, in principle, occur in all foods or feedstuffs infested with the corresponding fungi. However, the number of investigations dealing with natural occurrence of citrinin is small as compared to studies concerning other mycotoxins, and available data are far from being systematic.

Food of vegetable origin

Reports on citrinin in cereals and cereal products are available from Denmark (52), Canada (89), Tunesia (6), India (68), and Switzerland (18). The latter only includes information about quantities: 11 out of 21 flour samples tested contained 0.2–1 µg/kg citrinin (mean value: 0.6 µg/kg); two out of four samples of durum wheat contained 0.3 and 0.7 µg/kg, resp.; one of two samples of pasta contained 0.5 µg/kg; five samples of wheat bran, and two each of maize semolina, oats, rice, and barley were found negative (limit of detection: 0.1 µg/kg). In Germany, citrinin was detected in various kinds of bread in the lower ppb range (81).

In Japan, Takahashi et al. (93) found citrinin in rice and rice flour, and Nishijima (67), who investigated 53 samples of commercial cereal products withdrawn in and around Tokyo, detected 27 µg/kg citrinin in one sample of maize flour. Fourteen positive samples containing up to 1390 µg/kg were found among 23 samples of imported maize kernels and maize flour withdrawn at wholesale establishments. Tu et al. (96) reported on citrinin in China in soy sauce which had been prepared using uncontrolled starter cultures. Citrinin together with aflatoxin was found also in peanuts, and in coconut products from India (90, 55).

Cerutti et al. (13) did not find citrinin in 23 samples of imported beer; this may be explained by the fact that during the first 5 days of barley germination eventually present mycotoxins are destroyed (22, 82).

Harwig et al. (37, 38) detected citrinin, besides patulin, in apples with brown rot (*P. expansum*), but not in apple juice and other apple products; this may be due to the instability of citrinin.

At the 10th AOAC Congress in 1987 on the worldwide occurrence of mycotoxins in food and feeds, Jelinek et al. (45) reported that citrinin, as concomitant toxin of ochratoxin A, was frequently found in many products, but that data about quantities were not available.

Food of animal origin

Mycotoxins may get into meat, offals, blood, milk, and into products made of these in two different ways. The products start molding and the toxins diffuse into the products. The second way, called carry-over, is by mycotoxin-containing feed; the mycotoxins are stored in the animal organism for varying lengths of time until they degrade or are excreted with feces and/or urine, partly also with milk and, in the case of poultry, with eggs.

Citrinin producing fungi were frequently isolated from meat products and sausages. Ciegler et al. (14) inoculated (raw) sausages with five citrinin-positive isolates, but failed to detect the toxin in the product after the usual maturing time of 10 weeks. In a similar experiment with country cured ham, however, Wu et al. (104) found small citrinin quantities at 15°C and considerable ones at 25–30°C, while the five strains of *P. viridicatum* which the investigators used failed to grow on this substrate at 10°C. Leistner and Eckardt (57) therefore recommend temperatures of 15°C and less for storage and maturation of products which are susceptible to molding. The authors emphasize, however, that citrinin formation is possible on every meat and should be regarded as serious.

In England, Jarvis (44) investigated 19 moldy commercial cheeses; 15 of them contained citrinin up to 50 µg/kg as well as ochratoxin A. Due to diffusion the concentrations were higher in the cheese than on its surface.

Contamination by carry-over was studied in hens by Abdelhamid and Dorra (2), who fed poultry feed containing 100 µg/kg citrinin over 6 weeks. After this time they detected 10 µg/kg in muscles and egg yolk and 6 µg/kg in the albumen. It should be underlined, however, that in practice such concentrations are extremely rare and certainly not fed over weeks. Comparable experiments in mammals, as far as we know, have not been published.

Feeds

Feeds, usually less carefully stored than food, are less protected against uptake of water from the atmosphere. This applies primarily to feed produced at the farm, but also to commercial feed stored by the farmer. Inadequate storage facilitates the infestation by fungi listed in Table 1 and contamination by mycotoxins. Citrinin in feedstuffs is of secondary importance, however; contamination of poultry meat and eggs is limited to extremely rare cases (see the preceding section).

In the United States, Stahr et al. (92) investigated pig feed as cause of ochratoxin A intoxication. They found citrinin nearly as often as ochratoxin. Gedek (28) reports on studies in Denmark where ochratoxin A was found in 58 % of barley samples (mean value: 3 mg/kg) and citrinin in 9 % (mean value: 1 mg/kg). In Egypt, Abdelhamid (1) detected citrinin in 15 % of 52 feed samples (mean value: 26 µg/kg), with maximum citrinin contents found in fish meal (40–70 µg/kg).

However, all these concentrations are far below those experimental values which induced nephropathy in pigs (200 µg/kg) (27, 52).

Occurrence in humans

Reports on the occurrence of citrinin in the human organism are not available.

Influence of treatment and processing of the content of citrinin

Citrinin is more susceptible to heat than other mycotoxins (85). Its effectiveness, in terms of antibiotic activity, decreased after 15 min at 100°C and pH 2–9.5, with degradation beginning at 60–70°C. Also, UV light has been found to reduce its activity to some extent (81). In terms of its pharmacological effect on young hens, heat treatment of 100°C for 8 min was little effective, while no diuretic effect was observed any more if citrinin had been exposed to 105°C for 16 min (50).

Citrinin in stored crops is not stable. Its degradation rate has been found to increase with increasing water content. Harwig et al. (37) have shown that in barley, maize, and wheat, at a_w of 0.70 and 25°C, the half-life values were 7.8, 15.5, and 11.9 days, resp., at a_w of 0.90, 1.8, 10.4, and 3.0 days only, however. The authors assume this to be due to reactions with SH groups, similar to patulin or penicillic acid. This assumption was refuted by Ciegler et al. (14). Glucosidation in living vegetable tissue, as in the case of zearalenone, would be another explanation; zearalenone has been found to escape analytical detection by glucosidation, but does not lose its toxicity.

During malt production (1 mg/kg citrinin in barley) and brewing of beer citrinin and ochratoxin A have been found to degrade (53).

Citrinin kinetics and metabolism

Thirty minutes after i.v. administration of 3 mg/kg body weight in rats, 15 % of the citrinin dose was found in the liver and 6 % in the kidneys; after 6 h, these

levels decreased to 8 % and 5 %, resp. 74 % was excreted with the urine during the first 24 h. Four percent and 11 % were found after 24 and 48 h, resp., in the feces (71). According to Reddy et al. (77), citrinin is excreted in two phases of different rates, one resulting in a biological half-life value of 1.95 h, the other of 39.7 h. After i.v., i.m., or s.c. application to rats, citrinin was still detected in the blood as late as after 24 h. After oral application, maximum serum levels were observed after 3 h which subsequently decreased quickly. About 20 % are bound to serum albumin (16, 84).

Of a single oral dose of 30 mg citrinin/kg body weight administered to rats, 15.4 % was metabolized into dihydrocitrinone, while 42.5 % was found unchanged in urine and blood plasma (21). However, *Penicillium viridicatum* was found to produce the same metabolite after extended growth in culture broth, which was subsequently converted by the fungus into ochratoxin A (69).

Reddy et al. (77) found three metabolites of higher polarity than that of citrinin in pregnant rats; these metabolites, in contrast to the mother compound, were not detected in the fetuses.

Toxicology of citrinin

Citrinin has been classified as toxic to moderately toxic. LD₅₀ after oral application to rats is 50 mg/kg body weight, to mice 112, golden hamsters 67, and guinea pigs 43 mg/kg (8, 42, 80).

The citrinin action in the cell is characterized by accumulation in the mitochondria and interference with the electron transport system (4, 35, 36). The process, which depends on the pH and does not affect the permeability of the cell membrane, leads to an inhibition of the synthesis of DNA and, subsequently, of protein and RNA as well (15, 63, 105, 106).

Nephrotoxicity

Citrinin has nephrotoxic effects. Response of the animals investigated was similar as far as the renal sites of citrinin action and susceptibility of the different cell kinds are concerned (105, 106). Damage to the renal tubuli in the dose range of 20–50 mg/kg body weight were observed in mice, rats, guinea pigs, rabbits, dogs, and pigs (11).

After a single i.p. application of 50 mg/kg body weight to rats, mainly cytoplasmic vacuolization of epithelial cells of proximal convoluted tubuli was observed after 24 h, followed by multifocal areas of necrotic proximal convoluted tubuli after 48 h. After 72 h, regeneration of the damaged cells began and was nearly completed after 96 h (60). Similar results have been reported by Jordan et al. (47), and Phillips et al. (72). Urinary excretion increased with decreasing osmolality (7), a reaction observed in hens as well (29).

Phillips and Hayes (70) report an increase in kidney weight of mice during the first 2 days after i.p. application of 35 mg/kg body weight, which was accompanied by decrease of DNA, protein, and later, also RNA. Similar results were obtained by Jordan et al. (48) in golden hamsters, by Thacker et al. (94) in guinea pigs, and by Hanika et al. (33, 34) in rabbits.

In young hens (24–28 days old) citrinin added to the feed caused a dose-dependent increase of water uptake and urinary excretion at doses from 3.86 mg on during 4 h (50). After renal portal infusion of 0.2 ml of citrinin solution con-

taining 200 and 800 mg/kg citrinin, Hnatow and Wideman (40) did not find histopathological changes, but a dose-dependent increase of urinary excretion and simultaneous decrease of osmolality. The effects of citrinin were reversible.

The nephrotoxic effects of citrinin are characterized by kidney enlargement, degeneration of the tubuli with subsequent cortical fibrosis, and functional decrease of tubular activity (42).

Genotoxicity and other short-term tests

In the rec assay in *Bacillus subtilis* citrinin still produced a positive reaction following 20 µg/disc (97), while Manaba et al. (61) did not find any response to 10 and 100 µg/disc. The Ames test in *Salmonella typhimurium* was negative up to 400 µg/plate (24, 54, 98, 102). Thust and Kneist (95) describe citrinin as a potent inducer of chromosome aberrations after metabolic activation of liver microsomes of humans and rats; sister chromatid exchanges were not found, however. Martin et al. (63) report single- and double-strand breaks in the DNA of intact cells of *E. coli*. Base substitution mutations have also been found (9).

Carcinogenicity

In a study in groups of 20 male DDD mice each which were given 0, 100, and 200 mg/kg citrinin added to the feed, no tumors were found in the surviving animals after 70 weeks (49). Renal tumors were also not observed in male Sprague-Dawley rats after 48 weeks fed a diet containing 200 and 500 mg citrinin/kg body weight (91).

Long-term feeding tests (80 weeks) in male F344 rats which were fed a diet containing 1 g citrinin/kg body weight resulted in 35 out of 48 animals (which were sacrificed after 40, 60, and 80 weeks) developing histopathologically verified benign clear-cell adenomas of the kidneys (5).

Embryotoxicity and teratogenicity

In rats which received a single s.c. dose of 35 mg citrinin/kg body weight on one of the days 3–15 of gestation no skeletal malformations of the fetuses have been found, but enlarged kidneys, internal hydrocephalus and cleft palate were found. Thirty – 50 % of the mother animals died; the resorption rate of fetuses in the treated group was higher than in controls (78). Comparable results were obtained by Hayes et al. (39) and Hood et al. (41) in mice, and by Mayura et al. (64) after a single i.p. application of 30 or 40 mg citrinin/kg body weight to rats.

Effect on the immune system

Immune-suppressive effects, as have been found with ochratoxin A, were not observed after application of citrinin to mice. According to Reddy et al. (79), even a slight stimulation of the immune system appears after i.p. doses of up to 3 mg/kg body weight.

Combination effect with other toxins

After simultaneous application of citrinin and ochratoxin A in *vitro* Creppy et al. (15) observed in hepatome cells an immediate inhibition of RNA and protein synthesis and, after a short time, blocking of the DNA synthesis.

Mice: After combined oral application of 25 mg ochratoxin A/kg body weight and 200 mg citrinin/kg body weight Kanisawa (49) found a clear increase of renal cell tumors after 70 weeks.

Gupta and Chatterjee (31), who applied methaqualone following i.p. doses of 10–30 mg citrinin/kg body weight to mice report longer sleeping times of the animals. Gupta and Sasmal (32) found the same effect after paraldehyde and citrinin, and paraldehyde and ochratoxin A, and attribute the potentiating effect to a decrease of the acetylcholine level in the brain.

Rats: Citrinin was found to significantly increase the carcinogenicity of N-nitroso-dimethylamine (25) and N-(3,5-dichlorophenyl) succinimide (91).

Mayura et al. (64) applied 30 mg citrinin/kg body weight and 1.0 mg ochratoxin A/kg body weight to rats in a single s.c. dose on 1 day of days 5–14 of gestation. Twenty-two – 40 % of the mother animals died, and malformations of skeleton and tissue were more frequent than in the controls, while these effects were completely absent when single doses of either citrinin or ochratoxin were administered.

Hens: Manning et al. (62) and Brown et al. (10), who fed a diet containing 300 mg/kg citrinin and 3 mg/kg ochratoxin A to 3-week-old chickens did not observe any additive or synergistic effect. In adult hens, Glahn et al. (30) did not find any additive effect on renal function, manure moisture, or diuresis.

Vesela et al. (101), however, who treated chicken embryos with 4 µg citrinin and 0.03–0.5 µg ochratoxin A report clear additive effects in terms of retarded growth and various malformations.

Insects: Dowd (20) fed naturally occurring concentrations of citrinin, ochratoxin A, and penicillic acid (2.5 mg/kg), and combinations of these, to freshly hatched larvae of corn earworms (*Heliotis zea*) and fall armyworms (*Spodoptera frugiperda*). Ochratoxin and citrinin both had a synergistic effect on *Spodoptera*, while the combination of penicillic acid and citrinin had the same effect as the individual toxins. The latter combination was additive in *Heliotis*, however. All remaining combinations had neither synergistic nor additive effects.

Some other combination tests with ochratoxin A in dogs, rats, and mice (17) were conducted with such high concentrations as are never reached in foods and only exceptionally reached in feedstuffs.

Long-term tests using sub-acute doses, also in combination with other agents, have not been reported.

Analysis

TLC and HPLC have been found useful to detect citrinin. Various methods for extraction and purification depending on the matrix have been available. With TLC the limit of detection is 1–20 µg/kg, with HPLC 0.1–0.01 µg/kg. Fluorescence measurement is more sensitive than UV absorption (18, 100). Analytical methods were published by Betina and by Scott (8, 86–88).

Unspecific bioassays, according to Lenz et al. (59) and Lenz and Süßmuth (58), are growth inhibition of *Bacillus thuringiensis*, inhibition of pigment synthesis in *Serratia marcescens* or prevention of swarming of *Azospirillum brasiliense* and of *Proteus mirabilis*.

Discussion

It is not possible at this time to estimate the risk caused by citrinin for consumers to any reliable extent. Our knowledge of combination effects with concomitant mycotoxins and other toxic compounds present in food is insufficient. Data about the average and/or maximal daily uptake by humans and animals have not been available. In animals, the question of the carry-over of the compound itself and its metabolites has not yet been fully explored. Furthermore, the effects of long-term exposure to low doses have not been investigated.

Tremendous efforts in research will be necessary to clarify open questions, as not a single toxin, but interactions of several toxins are involved. What seems to be quite sure is that citrinin is no genotoxic carcinogen. It has, therefore, been classified by IARC as a substance of limited evidence for carcinogenicity (42).

However, it is a well-known fact that mycotoxins of so-called storage fungi, to which all citrinin producers belong, are preferentially found at places where products for human and animal nutrition are stored under inappropriate conditions, i.e., where stored food and feed are not kept dry (26). Preventive measures included improvement of post-harvest techniques, strict control of the relative humidity in stores, and additional use of protective agents. In view of the relatively high instability of citrinin, even at sufficiently low a_w values, this way seems not only promising, but certainly also helpful in minimizing concomitant mycotoxins as well.

References

1. Abdelhamid AM (1990) Occurrence of some mycotoxins (aflatoxin, ochratoxin A, citrinin, zearelenone and vomitoxin) in various Egyptian feeds. *Arch Tierernähr* 40:647–664
2. Abdelhamid AM, Dorra TM (1990) Study on effects of feeding laying hens on separate mycotoxins (aflatoxins, patulin, or citrinin)-contaminated diets on the egg quality and tissue constituents. *Arch Tierernähr* 40:305–316
3. Abramson D, Mills JT, Sinha RN (1990) Mycotoxin production in amber durum wheat stored at 15 and 19 % moisture content. *Food Additives and Contaminants* 7:617–627
4. Aleo MD, Wyatt RD, Schnellmann RG (1991) The role of altered mitochondrial function in citrinin-induced toxicity to rat renal proximal tubule suspensions. *Toxicol Appl Pharmacol* 109:455–463
5. Arai M, Hibino T (1983) Tumorigenicity of citrinin in male F344 rats. *Cancer Letters* 17:281–287
6. Bacha H, Hadidane R, Creppy EE, Regnault C, Ellouze F, Dirheimer G (1988) Monitoring and identification of fungal toxins in food products, animal feed and cereals in Tunisia. *J Stored Prod Res* 24:199–206
7. Berndt WO, Hayes AW (1977) Effects of citrinin on renal tubular transport functions in the rat. *J Environ Pathol Toxicol* 1:93–106
8. Betina V (ed) (1984) Mycotoxins – production, isolation, separation and purification. Elsevier, Amsterdam 1984
9. Brakhage AA, Buerger MG, Creppy EE, Dirheimer G, Roeschenthaler RJ (1988) Base substitution mutations induced by the mycotoxin citrinin. *Arch Toxicol, Suppl* 12:341–346
10. Brown TP, Manning RO, Fletcher OJ, Wyatt RD (1986) The individual and combined effects of citrinin and ochratoxin A on renal ultrastructure in layer chicks. *Avian Dis* 30:191–198
11. Carlton WW, Tuite J (1977) Metabolites of *P. viridicatum* toxicology. In: Rodricks et al. p 525–541
12. Castegnaro M, Plestina R, Dirheimer G, Chernozemsky IN, Bartsch H (eds) (1991) Mycotoxins, endemic nephropathy and urinary tract tumours. IARC, Lyon

13. Cerutti G, Vecchio A, Finoli C, Trezzi A (1987) Indices of quality for beer. III. Mycotoxins. *Monatsschrift für Brauwissenschaft* 40:455–457
14. Ciegler A, Mintzlaff H-J, Machnik W, Leistner L (1972) Untersuchungen über das Toxinbildungsvermögen von Rohwürsten isolierter Schimmelpilze der Gattung *Penicillium*. *Fleischwirtschaft* 52:1311–1314, 1317–1318
15. Creppy EE, Lorkowski G, Beck G, Röschenthaler R, Dirheimer G (1980) Combined action of citrinin and ochratoxin A on hepatoma tissue culture cells. *Toxicol Lett* 5:375–380
16. Damodaran C, Shanmugasundaram ERB (1978) Distribution of radioactive citrinin in tissues and serum protein(s). *J Radioanal Chem* 46:373–377
17. DFG (Deutsche Forschungsgemeinschaft) (1990) Ochratoxin A – Vorkommen und toxikologische Bewertung. VCH Verlagsges, Weinheim
18. Dick R, Baumann U, Zimmerli B (1988) Zum Vorkommen von Citrinin in Cerealien. *Mitt Gebiete Lebensm Hyg* 79:159–164
19. Domsch KH, Gams W, Anderson T-H (1980) Compendium of Soil Fungi. Vol 1 & 2. Academic Press, London
20. Dowd PF (1989) Toxicity of naturally occurring levels of the *penicillium* mycotoxins citrinin, ochratoxin A and penicillic acid to the corn earworm, *Heliotis zea*, and the fall armyworm, *Spodoptera frugiperda* (Lepidoptera: Noctuidae). *Environmental Entomology* 18:24–29
21. Dunn BB, Stack ME, Park DL, Joshi A, Friedman L, King RL (1983) Isolation and identification of Dihydrocitrinone, a urinary metabolite of citrinin in rats. *J Tox Environ Health* 12:283–289
22. El-Banna AA (1987) Stability of citrinin and deoxynivalenol during germination process of barley. *Mycotoxin Res* 3:37–41
23. El-Kady IA (1986) Mycotoxin-producing potential of aspergilli and penicilli of cereal grains and wheat straw. *Nat Monspel Rev Bot Gen Meditarr* 50:119–126
24. Engel G, von Milczewski KE (1976) Evidence of mycotoxins after activation with rat liver homogenates with histidin deficient mutants of *salmonella typhimurium*. *Kieler Milchwirtsch Forsch Ber* 28:359–366
25. Enomoto M (1978) Carcinogenicity of mycotoxins. In: Uraguchi & Yamazaki, p 239–262
26. Frank HK (1983) Pilzschäden bei Vorräten und Futtermitteln. In: Heinze K (ed) Leitfaden der Schädlingsbekämpfung, Vol IV. Vorratschutz. Wiss Verlagsges, Stuttgart, p 247–268
27. Friis P, Hasselager E, Krogh P (1969) Isolation of citrin and oxalic acid from *penicillium viridicatum* westling and their nephrotoxicity in rats and pigs. *Acta Pathol Microbiol Scand* 77:559–560
28. Gedek B (1980) Kompendium der medizinischen Mykologie. Parey, Berlin Hamburg
29. Glahn RP, Wideman RF Jr (1987) Avian diuretic response to renal portal infusions of the mycotoxin citrinin. *Poultry Sci* 66:1316–1325
30. Glahn RP, Wideman RF Jr, Evangelisti JW (1988) Effects of ochratoxin A alone and in combination with citrinin on kidney function of single comb white leghorn pullets. *Poultry Sci* 67:1034–1042
31. Gupta M, Chatterjee T (1980) Methaqualone sleeping time prolongation by citrinin in mice. *IRCS Medical Sci* 8:8
32. Gupta M, Sasmal D (1981) Prolongation of paraldehyde sleeping by ochratoxin A and citrinin. *IRCS Medical Sci* 9:256–257
33. Hanika C, Carlton WW, Boon GD, Tuite J (1984) Citrinin mycotoxicosis in the rabbit: Clinicopathological alterations. *Fd Chem Toxic* 22:999–1008
34. Hanika C, Carlton WW, Hinsman EJ, Tuite J (1986) Citrinin mycotoxicosis in the rabbit: Ultrastructural alterations. *Vet Pathol* 23:245–253
35. Haraguchi H, Hashimoto K, Shibata K, Taniguchi M, Oi S (1987a) Mechanism of anti-fungal action of citrinin. *Agric Biol Chem* 51:1373–1378
36. Haraguchi H, Tanaka T, Taniguchi M, Oi S, Hashimoto K (1987b) Inhibitory effects of citrinin on mitochondrial function. *Agric Biol Chem* 51:1453–1454
37. Harwig J, Blanchfield BJ, Jarvis G (1977) Effect of water activity on disappearance of patulin and citrinin from grains. *J Food Sci* 42:1225–1228
38. Harwig J, Kennedy BPC, Scott PM (1973) Occurrence of patulin and patulin-producing

strains of *Penicillium expansum* in natural rots of apple in Canada. *Can Inst Food Sci Technol J* 6:22–25

- 39. Hayes AW, Hood RD, Snowden K (1974) Preliminary assay for the teratogenicity of mycotoxins. *Toxicol Appl Pharmacol* 29:153–158
- 40. Hnatow LL, Wideman RF Jr (1985) Kidney function of single comb white leghorn pullets following acute renal portal infusion of the mycotoxin citrinin. *Poultry Sci* 64:1553–1561
- 41. Hood RD, Hayes AW, Scammell JG (1976) Effects of prenatal administration of citrinin and viriditoxin to mice. *Fd Cosmet Toxicol* 14:175–178
- 42. IARC (1986) Citrin. IARC Monographs, Vol 40, p 67–82
- 43. IUPAC (1982) Physicochemical data for some selected mycotoxins. *Pure Appl Chem* 54:2219–2284
- 44. Jarvis B (1983) Mould and mycotoxins in mouldy cheeses. *Microbiol Alim Nutr* 1:187–193
- 45. Jelinek CF, Pohland AE, Wood GE (1989) Worldwide occurrence of mycotoxins in foods and feeds – an update. *J Assoc Off Anal Chem* 72:223–230
- 46. Jimenez M, Sabchis V, Mateo R, Hernandes E (1986) Penicillium in pre-harvest corn in Valencia (Spain): II. Study of the enzymatic and toxicogenic capacities of the species. *Mycopathologia* 96:13–18
- 47. Jordan WH, Carlton WW, Sansing GA (1978a) Citrinin mycotoxicosis in the rat: I. Toxicology and pathology. *Fd Cosmet Toxicol* 16:431–439
- 48. Jordan WH, Carlton WW, Sansing GA (1978b) Citrinin mycotoxicosis in the Syrian hamster. *Fd Cosmet Toxicol* 16:335–363
- 49. Kanisawa M (1984) Synergistic effect of citrinin on hepatorenal carcinogenesis of ochratoxin A in mice. In: Kurata & Ueno, p 245–254
- 50. Kirby LK, Nelson TS, Halley JT, Beasley JN (1987) Citrinin toxicity in young chicks. *Poultry Sci* 66:966–968
- 51. Krogh P, Hasselager E, Friis P (1970) Studies on fungal nephrotoxicity. 2. Isolation of two nephrotoxic compounds from *Penicillium viridicatum* westling: Citrinin and oxalic acid. *Acta Path Microbiol Scand, Section B* 78:401–413
- 52. Krogh P, Hald B, Pedersen UJ (1973) Occurrence of ochratoxin A and citrinin in cereals associated with mycotoxic porcine nephropathy. *Acta Pathol Microbiol Scand, Section B* 81:689–695
- 53. Krogh P, Hald B, Gjertsen P, Myken F (1974) Fate of ochratoxin A and citrinin during malting and brewing experiments. *Appl Microbiol* 28:31–34
- 54. Kuczuk MH, Benson PM, Heath H, Hayes AW (1978) Evaluation of the mutagenic potential of mycotoxins using *Salmonella typhimurium* and *Saccharomyces cerevisiae*. *Mutat Res* 53:11–20
- 55. Kumari CK, Nusrath M (1987) Natural occurrence of citrinin and ochratoxin A in coconut products. *Natl Acad Sci Lett (India)* 10:303–305
- 56. Kurata H, Ueno Y (eds) (1984) *Toxigenic Fungi – Their Toxins and Health Hazard*. Elsevier, Amsterdam
- 57. Leistner L, Eckardt C (1981) Schimmelpilze u. Mykotoxine in Fleisch und Fleischerzeugnissen. In: ReiB 1981, p 297–341
- 58. Lenz P, Süssmuth R (1987) A highly sensitive bacterial assay for toxins on swarming inhibition, and comparison with the cup plate assay based on growth inhibition. *Toxicology* 45:185–191
- 59. Lenz P, Süssmuth R, Seibel E (1989) A test battery of bacterial toxicity assays and comparison with LD₅₀ values. *Toxi Assess* 4:43–52
- 60. Lockard VG, Phillips RD, Hayes AW, Berndt WO, O'Neal ND (1980) Citrinin nephrotoxicity in rats: A light and electron microscopic study. *Experi Molecul Pathol* 32:226–240
- 61. Manabe M, Goto T, Tanaka K, Matsuura S (1981) The capabilities of the *Aspergillus flavus* group to produce aflatoxins and kojic acid (Jpn). *Rep Natl Food Res Inst* 38:115–120
- 62. Manning RO, Brown TP, Wyatt RD, Fletcher OJ (1985) The individual and combined effects of citrinin and ochratoxin A in broiler chicks. *Avian Dis* 29:985–997
- 63. Martin W, Lorkowski G, Creppy EE, Dirheimer G, Roeschenthaler R (1986) Action of citrinin on bacterial chromosomal and plasmid DNA in vivo and in vitro. *Appl Environ Microbiol* 52:1273–1279

64. Mayura K, Parker R, Berndt WO, Phillips TD (1984) Effect of simultaneous prenatal exposure to ochratoxin A and citrinin in the rat. *J Toxicol Environ Health* 13:553–561
65. Mills JT, Abramson D, Frohlich AA, Marquardt RR (1989) Citrinin and ochratoxin A production by *Penicillium* spp. from stored durum wheat. *Can J Plant Pathol* 11:357–360
66. Mooney JP (1989) The effect of relative humidity on mycotoxin production by *Penicillium viridicatum*. *Dissertation Abstract International*, B 49 (10) 4427
67. Nishijima M (1984) Survey for mycotoxins in commercial foods. In: Kurata and Ueno, p 172–181
68. Pande N, Saxena J, Pandey H (1990) Natural occurrence of mycotoxins in some cereals. *Mycoses* 33:126–128
69. Patterson MF, Damoglou AP (1987) Conversion of the mycotoxin citrinin into dihydrocitrinone and ochratoxin A by *Penicillium viridicatum*. *Appl Microbiol Biotechnol* 27:574–578
70. Phillips RD, Hayes AW (1978) Effect of the mycotoxin citrinin on composition of mouse liver and kidney. *Toxicicon* 16:351–359
71. Phillips RD, Berndt WO, Hayes AW (1979) Distribution and excretion of [¹⁴C] citrinin in rats. *Toxicology* 12:285–298
72. Phillips RD, Hayes AW, Berndt WO, Williams WL (1980) Effects of citrinin on renal function and structure. *Toxicology* 16:123–137
73. Pravindra Chary M, Girisham S, Reddy SM (1986) Influence of different seed-borne fungi of rice (*Oryza sativa* L.) on the production of citrinin by *Penicillium citrinum*. *J Food Sci Technol, India* 23:160–162
74. Raistrick H, Hetherington AC (1931) Studies in the biochemistry of micro-organisms. XIII. On the production and chemical constitution of a new yellow colouring matter, citrinin, produced by *Penicillium citrinum* THOM. *Roy Trans, Ser B* 220:265–268
75. Raper KB, Fennell DJ (1965) The Genus *Aspergillus*. Williams & Wilkins, Baltimore
76. Raper KB, Thom CH (1949) A manual of the Genus *Penicillium*. Williams & Wilkens, Baltimore
77. Reddy RV, Hayes AW, Berndt WO (1982a) Disposition and metabolism of [¹⁴C] citrinin in pregnant rats. *Toxicology* 25:161–174
78. Reddy RV, Mayura K, Hayes AW, Berndt WO (1982b) Embryocidal teratogenic and fetotoxic effects of citrinin in rats. *Toxicology* 25:151–160
79. Reddy RV, Taylor MJ, Sharma RP (1988) Evaluation of citrinin toxicity on the immune functions of mice. *J Food Protect* 51:32–36
80. Reiss J (ed) (1981) Mykotoxine in Lebensmitteln. Fischer Verlag, Stuttgart
81. Reiss J (1986) Schimmelpilze – Lebensweise, Nutzen, Schaden, Bekämpfung. Springer Verlag, Berlin Heidelberg
82. Rodricks JV (ed) (1976) Mycotoxins and other fungal related food problems. American Chemical Soc, Washington
83. Rodricks JV, Hesseltine CW, Mehlman MA (eds) (1977) Mycotoxins in Human and Animal Health. Pathotox Publishers, Park Forest South
84. Scott PM (1977) *Penicillium* mycotoxins. In: Wyllie & Morehouse, Vol 1, p 283–356
85. Scott PM (1984) Effects of food processing on mycotoxins. *J Food Protection* 47:489–499
86. Scott PM (1988) Mycotoxins. *JAOAC* 71:70–76
87. Scott PM (1990) Mycotoxins. *JAOAC* 73:98–105
88. Scott PM (1991) Mycotoxins. *JAOAC* 74:120–128
89. Scott PM, van Walbeek W, Kennedy B, Anyeti D (1972) Mycotoxins (ochratoxin A, citrinin, and sterigmatocystin) and toxigenic fungi in grains and other agricultural products. *J Agric Food Chem* 20:1103–1109
90. Scott PM, Trendholm HL, Sutton MD (eds) (1985) Mycotoxins – a Canadian perspective. National Res Counc Canada, Ottawa
91. Shinohara DK, Arai M, Hirao K, Sugihara S, Nakanishi K, Tsunoda H, Ito N (1976) Combination effect of citrinin and other chemicals on rat kidney tumorigenesis. *Gann* 67:147–155
92. Stahr HM, Domoto M, Zhu BL, Pfeiffer R (1985) Chemical canalisis for ochratoxin poisoning. *Mycotoxin Res* 1:31–35

93. Takahashi H, Yazaki H, Manabe M, Matsuura S, Kimura S (1990) Distribution of citrinin and aflatoxins in steamed milled rice kernels (Jpn.). *Proc Jpn Assoc Mycotoxicol* 31:49-53
94. Thacker HL, Carlton WW (1977) Citrinin mycotoxicosis in the guinea-pig. *Fd Cosmet Toxicol* 15:553-561
95. Thust R, Kneist S (1979) Activity of citrinin metabolized by rat and human microsome fractions in clastogenicity and SCE assay on Chinese hamster V79-E cells. *Mutation Res* 67:321-330
96. Tu C, Zhang S, Fang Z (1984) Detection of citrinin in soy sauce produced by mixed fermentation. *Shipin Yu Fajiao Gongye* 5:24-27
97. Ueno Y, Kubota K (1976) DNA-attacking ability of carcinogenic mycotoxins in recombination-deficient mutant cells of *bacillus subtilis*. *Cancer Res* 36:445-451
98. Ueno Y, Kubota K, Ito T, Nakamura Y (1978) Mutagenicity of carcinogenic mycotoxins in *salmonella typhimurium*. *Cancer Res* 38:536-542
99. Uraguchi K, Yamazaki M (eds) (1978) *Toxicology, biochemistry and pathology of mycotoxins*. Kodansha Ltd., Tokyo
100. Vail RB, Homann MJ (1990) Rapid and sensitive detection of citrinin production during fungal fermentation using high-performance liquid chromatography. *J Chromatogr* 535:317-323
101. Vesela D, Vesely D, Jelinek R (1983) Toxic effects of ochratoxin A and citrinin, alone and in combination, on chicken embryos. *Appl Environ Microbiol* 45:91-93
102. Wehner FC, Thiel PG, van Rensburg SJ, Demasius JPC (1978) Mutagenicity to *salmonella typhimurium* of some *aspergillus* and *penicillium* mycotoxins. *Mutat Res* 58:193-203
103. Wyllie TD, Morehouse LG (eds) (1977) *Mycotoxic fungi, mycotoxins, mycotoxicoses*, 3 Vol. Marcel Dekker, New York, Basel
104. Wu MT, Ayres JC, Koehler PE (1974) Production of citrinin by *penicillium viridicatum* on country-cured-ham. *Appl Microbiol* 27:427-428
105. Yoneyama M, Sharma RP (1987) Biochemical alteration induced by citrin in cultured kidney epithelial cell systems. *Arch Environ Contam Toxicol* 16:765-770
106. Yoneyama M, Sharma RP, Kleinschuster SJ (1986) Cytotoxicity of citrinin in cultured kidney epithelial cell systems. *Ecotoxicol. Environmental Safety* 11:100-111

Received February 10, 1992
accepted April 11, 1992

Authors's address:

Prof. Dr. H.K. Frank, Hans-Sachs-Str. 3, D-7505 Ettlingen, FRG